пятница, 25 мая 2012 г.

Новости Компьюлента: Как пластичность поведения связана с синтезом белка

Новости Компьюлента
Новости Компьюлента
Как пластичность поведения связана с синтезом белка
May 25th 2012, 14:40

Наша способность изменять своё поведение, приспосабливаясь к новым обстоятельствам, зависит от белка, управляющего посадкой рибосом на мРНК в начале белкового синтеза.

Пластичность поведения зависит от белка, регулирующего посадку рибосомы на матричную РНК. (Фото <noindex><a target=Hybrid Medical Animation.)">
Пластичность поведения зависит от белка, регулирующего посадку рибосомы на матричную РНК. (Фото Hybrid Medical Animation.)

Каждый день мы выполняем обычные действия, превратившиеся в незаметную рутину. Это происходит благодаря тому, что мозг запоминает предыдущий опыт и обращается к нему, когда мы оказываемся в такой же или похожей ситуации. Так, мы досконально знаем дорогу от работы до дома, а потому нам не приходится всякий раз напрягать внимание и память, чтобы оказаться на рабочем месте/дома. Но иногда привычные условия меняются: к примеру, на привычном маршруте вдруг затеяли ремонт — и мозгу приходится как-то адаптировать существующую схему поведения к новому окружению.

Очевидно, это должно сопровождаться изменениями в нейронной активности и, глубже, в активности генов. Исследователи из Нью-Йоркского университета (США) как раз и задумали выяснить, как изменения в поведении отражаются на синтезе белка в нейронах. Было решено сосредоточиться на ферменте PERK — протеинкиназе, которая регулирует активность одного из белковых факторов трансляции. Для этого получали мышей с выключенной в нейронах мозга киназой PERK. Мыши должны были найти выход из водного лабиринта — точнее, найти в нём платформу, на которую можно было бы выбраться. И нормальные, и мутантные животные в конце концов отыскивали дорогу и запоминали, как добраться к спасительному островку. Но на втором этапе плавучую платформу перемещали из привычного места в другое, и мыши с выключенным белком либо вообще ничего не находили, либо обнаруживали её много позже нормальных животных.

Другой эксперимент состоял в том, что мыши получали слабый удар током после того, как слышали некий звуковой сигнал. У животных вырабатывалась стандартная стрессовая реакция: в ответ на звуковой сигнал они впадали в ступор, стараясь не спровоцировать опасность. Но затем исследователи переставали пугать мышей электрическим током, и нормальные грызуны постепенно забывали о тревожном значении звукового сигнала. Не то было у мутантных мышей: они продолжали демонстрировать стрессовую реакцию, несмотря на то что никакого электрического тока и в помине не было.

То есть получалось, что гибкость поведения, способность адаптировать существующие схемы к новым, изменившимся обстоятельствам зависела от весьма специализированной белковой молекулы, которая, если не вдаваться в подробности, управляет рибосомой во время её посадки на мРНК. Свои результаты учёные попробовали подтвердить и на человеческом материале. Они проанализировали содержание фермента PERK в коре мозга больных шизофренией. Одним из её симптомов как раз является чрезвычайная негибкость, запрограммированность поведения. Как и ожидалось, в нейронах шизофреников было очень мало белка PERK.

Отчёт о работе учёные представили в журнале Cell Reports.

Можно сказать, что авторам удалось нечто уникальное — связать поведение с молекулярными перестройками в клетке. Ну а о практических перспективах этого, ввиду их очевидности и необъятности, можно даже и не говорить.

Подготовлено по материалам Нью-Йоркского университета.

Tweet
Please enable JavaScript to view the comments powered by Disqus. blog comments powered by Disqus

Источник: feedproxy.google.com, получено с помощью rss-farm.ru

You are receiving this email because you subscribed to this feed at blogtrottr.com.

If you no longer wish to receive these emails, you can unsubscribe from this feed, or manage all your subscriptions

Комментариев нет:

Отправить комментарий